Page 10 - Voda_Dapporto_alii_2016
P. 10

www.nature.com/scientificreports/


                                non-parametric Spearman correlation rank test. We also square root transformed the Dst values to improve
                                normality and divided the bivariate relationship between occupancy and Dst into four quadrants, and consid-
                                ered the species either as ‘widespread’ or ‘rare’ and the absolute genetic variation as low (< half) or high (> half)
                                of the maximum square root transformed Dst. The number of species falling into each quadrant was scored.
                                Subsequently, 999 null matrices were constructed by attributing to each species random values of occupancy
                                and Dst. For each square, we assessed the frequency for which the observed number of species was lower than in
                                random configurations. Values < 0.050 were considered as significantly empty quadrants, and values > 0.950 as
                                significantly full quadrants.
                                References
                                 1.  Whittaker, R. J. & Ferná ndez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press,
                                   2007).
                                 2.  MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).
                                 3.  Lomolino, M. V. A species-based theory of insular zoogeography. Global Ecol. Biogeogr. 9, 39–58 (2000).
                                 4.  Schoener, T. W. In The Theory of Island Biogeography Revisited (ed. Losos, J. B. & Ricklefs, R. E.) 52–87 (Princeton University Press,
                                   2009).
                                 5.  Cronk, Q. Islands as individuals. Trends Ecol. Evol. 14, 81 (1999).
                                 6.  Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol Lett.
                                   12, 693–715 (2009).
                                 7.  Ferná ndez-Palacios, J. M., Kueffer, C. & Drake, D. A new golden era in island biogeography. Front. Biogeogr. 7, 14–20 (2015).
                                 8.  Kueffer, C., Drake, D. R. & Fernández-Palacios, J. M. Island biology: looking towards the future. Biol. Lett. 10, 20140719 (2014).
                                 9.  Ulrich, W., Almeida, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).
                                10.  Dennis, R. L. H., Hardy, P. B. & Dapporto, L. Nestedness in island faunas: novel insights into island biogeography through butterfly
                                   community profiles of colonization ability and migration capacity. J. Biogeogr. 39, 1412–1426 (2012).
                                11.  Watling, J. I. & Donnelly M. A. Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv. Biol. 20,
                                   1016–1025 (2006).
                                12.  Matthews, T. J., Cottee-Jones, H. E. W. & Whittaker, R. J. Quantifying and interpreting nestedness in habitat islands: a synthetic
                                   analysis of multiple datasets. Divers. Distrib. 21, 392–404 (2015).
                                13.  Clark, J. S. The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol 27, 198–202 (2012).
                                14.  Hubbell, S. P. In The Theory of Island Biogeography Revisited (ed. Losos, J. B. & Ricklefs, R. E.) 264–292 (Princeton University Press,
                                   2009).
                                15.  Diamond, J. M. In Ecology and Evolution of Communities (ed. Cody, M. L. & Diamond, J. M.) 342–444 (Harvard University Press,
                                   1975).
                                16.  Dawson, M. N., Hays, C. G., Grosberg, R. K. & Raimondi, P. T. Dispersal potential and population genetic structure in the marine
                                   intertidal of the eastern North Pacific. Ecol. Monogr. 84, 435–456 (2014).
                                17.  Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in Neotropical birds. Am. Nat. 174, 358–368
                                   (2009).
                                18.  Carnicer, J. et al. A unified framework for diversity gradients: the adaptive trait continuum. Global Ecol. Biogeogr. 22, 6–18 (2013).
                                19.  Papadopoulou, A. et al. Testing the species–genetic diversity correlation in the Aegean Archipelago: Toward a haplotype-based
                                   macroecology? Am. Nat. 178, 241–255 (2011).
                                20.  Fattorini, S. Biogeography of tenebrionid beetles (Coleoptera: Tenebrionidae) in the circum-Sicilian islands (Italy, Sicily): Multiple
                                   biogeographical patterns require multiple explanations. Eur. J. Entomol. 108, 659–672 (2011).
                                21.  Luna-Jorquera, G., Fernández, C. E. & Rivadeneira, M. M. Determinants of the diversity of plants, birds and mammals of coastal
                                   islands of the Humboldt current systems: implications for conservation. Biodiv. Conserv. 21, 13–32 (2012).
                                22.  Papadopoulou, A., Anastasiou, I., Keskin, B. & Vogler, A. P. Comparative phylogeography of tenebrionid beetles in the Aegean
                                   archipelago: the effect of dispersal ability and habitat preference. Molec. Ecol. 18, 2503–2517 (2009).
                                23.  Dapporto, L., Bruschini, C., Dincă, V., Vila, R. & Dennis, R. L. H. Identifying zones of phenetic compression in West Mediterranean
                                   butterflies (Satyrinae): refugia, invasion and hybridization. Div. Distrib. 18, 1066–1076 (2012).
                                24.  Dapporto, L., Fattorini, S., Vodă, R., Dincă, V. & Vila, R. Biogeography of western Mediterranean butterflies: combining turnover
                                   and nestedness components of faunal dissimilarity. J. Biogeogr. 41, 1639–1650 (2014).
                                25.  Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W. & Habel, J. C. Palaearctic biogeography revisited: evidence for the existence of
                                   a North African refugium for Western Palaearctic biota. J. Biogeogr. 41, 81–94 (2014).
                                26.  Helmus, M. R., Savage, K., Diebel, M. W., Maxted, J. T. & Ives, A. R. Separating the determinants of phylogenetic community
                                   structure. Ecol. Lett. 10, 917–925 (2007).
                                27.  Pyron, R. A. & Burbrink, F. T. Ecological and evolutionary determinants of species richness and phylogenetic diversity for island
                                   snakes. Global Ecol. Biogeogr. 23, 848–856 (2014).
                                28.  Dennis, R. L. H., Shreeve, T. G., Olivier, A. & Coutsis, J. G. Contemporary geography dominates butterfly diversity gradients within
                                   the Aegean archipelago (Lepidoptera: Papilionoidea, Hesperioidea). J. Biogeogr. 27, 1365–1383 (2000).
                                29.  Stefanescu, C., Peñuelas, J. & Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean
                                   Basin. Global Change Biol. 9, 1494–1506 (2003).
                                30.  Stefanescu, C. et al. Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western
                                   Palaearctic. Ecography 36, 474–486 (2013).
                                31.  Vodă, R., Dapporto, L., Dincă, V. & Vila, R. Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 38,
                                   405–409 (2015).
                                32.  Vodă, R., Dapporto, L., Dincă, V. & Vila, R. Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of
                                   butterflies. PLoS ONE 10, e0117802 (2015).
                                33.  Hunter, M. L. & Hutchinson, A. The virtues and shortcomings of parochialism: conserving species that are locally rare, but globally
                                   common. Conserv. Biol. 8, 1163–1165 (1994).
                                34.  Dapporto, L., Vodă, R., Dincă, V. & Vila, R. Comparing population patterns for genetic and morphological markers with uneven
                                   sample sizes. An example for the butterfly Maniola jurtina. Methods Ecol. Evol. 5, 834–843 (2014).
                                35.  Asher, J. et al. The Millenium Atlas of Butterflies in Britain and Ireland. (Oxford University Press 2001).
                                36.  Waters, J. M. Competitive exclusion: phylogeography’s ‘elephant in the room’? Mol. Ecol. 20, 4388–4394 (2011).
                                37.  Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol. Evol.
                                   28, 78–85 (2013).
                                38.  Strona, G., Galli, P., Seveso, D., Montano, S. & Fattorini, S. Nestedness for Dummies (NeD): a user friendly web interface for
                                   exploratory nestedness analysis. J. Stat. Softw. 59, 1–9 (2014).
                                39.  Ulrich, W. & Zalewski, M. Abundance and co‐occurrence patterns of core and satellite species of ground beetles on small lake
                                   islands. Oikos 114, 338–348 (2006).
                                40.  Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).


         Scientific RepoRts | 6:28828 | DOI: 10.1038/srep28828                                                10
   5   6   7   8   9   10   11