Page 14 - p_isi_56
P. 14
Downloaded By: [Furnari, G.] At: 10:31 24 May 2010 262 S. Calvo et al.
to longitudinal and latitudinal variations. However, it is very difficult to assess which is the pre-
dominant factor, because they are often cross-correlated. An extensive monitoring of selected
parameters from Posidonia meadows would be necessary, including traditionally acknowledged
and new generation indicators, in particular from the southern and eastern Mediterranean basin,
for assessing the existence of latitudinal and/or longitudinal spatial patterns and at which scale
they operate.
References
[1] R. Costanza, R. d’Argue, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J.
Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt, The value of the world’s ecosystem services and natural
capital, Nature 387 (1997), pp. 253–260.
[2] E. Green and F. Short, World Atlas of Seagrasses, University of California Press, Berkeley, CA, 2003.
[3] C.M. Duarte, The future of seagrass meadows, Environ. Conserv. 29 (2002), pp. 192–206.
[4] F.T. Short and S. Wyllie-Echeverria, Natural and human-induced disturbances of seagrasses, Environ. Conserv.
23(1) (1996), pp.17–27.
[5] D.I. Walker, G.A. Kendrick, and A.J. McComb, Decline and recovery of seagrass ecosystems – The dynamics of
change, in Seagrasses: Biology, Ecology and Conservation, A.W.D. Larkum, R.J. Orth, and C.M. Duarte, eds.,
Springer, Dordrecht, The Netherlands, 2006, pp. 551–565.
[6] M.C. Gambi, F. Barbieri, and C. Nike Bianchi, New record of the alien seagrass Halophila stipulacea (Hydrochar-
itaceae)in the western Mediterranean: A further clue to changing Mediterranean Sea biogeography, JMBA2 –
Biodiversity Records (2008), pp. 1–7. Available at http://www.mba.ac.uk/jmba/pdf/6057.pdf.
[7] R. Molinier and J. Picard, Etudes biologiques sur les herbiers de Phanérogames marines à l’Ouest d’Alger, Bull.
Stat. Aquic. et Pêche, Castiglione, Algérie, 4 (1953), pp. 7–34.
[8] R. Molinier and J. Picard, Recherches sur les herbiers de phanèrogames marines du littoral mèditerranèen francais,
Ann. Inst. Ocèanogr. 27 (1952) pp. 208–234.
[9] R. Molinier and J. Picard, Notes biologiques à propos d’un voyage d’étude sur les côtes de Sicile, Ann. Inst.
Océanogr. 28(4) (1953), pp. 163–188.
[10] G. Giaccone and M. Sortino, Zonazione della vegetazione marina delle isole Egadi (Canale di Sicilia), Lav. Ist.
Bot. Giard. Col. Palermo 25 (1974), pp. 165–183.
[11] M. Sortino, Flora e vegetazione terrestre e marina del litorale di Palma di Montechiaro (AG), Lav. Ist. Bot. Giard.
Col. Palermo 23 (1967), pp. 195–304.
[12] M. Milazzo, F. Badalamenti, G. Ceccherelli, and R. Chemello, Boat anchoring on Posidonia oceanica beds in a
marine protected area (Italy, western Mediterranean): Effect of anchor types in different anchoring stages, J. Exp.
Mar. Biol. Ecol. 299 (2004), pp. 51–62.
[13] M.C. Buia, M. Cormaci, G. Furnari, and L. Mazzella, Osservazioni sulla struttura delle praterie di Posidonia ocean-
ica (L.) Delile di Capo Passero (Siracusa) e studio della macroflora epifita delle foglie, Boll. Accad. Gioenia Sci.
Nat. Catania 18 (1986), pp. 463–484.
[14] G. Di Carlo, F. Badalamenti, A.C. Jensen, E.W. Koch, and S. Riggio, Colonisation process of vegetative fragments
of Posidonia oceanica (L.) Delile on rubble mounds, Mar. Biol. 147 (2005), pp. 1261–1270.
[15] M. Holmer, M. Argyrou, T. Dalsgaard, R. Danovaro, E. Diaz-Almela, C.M. Duarte, M. Frederiksen, A. Grau,
I. Karakassis, N. Marbà, S. Mirto, M. Pérez, A. Pusceddu, and M. Tsapakis, Effects of fish farm waste on Posido-
nia oceanica meadows: Synthesis and provision of monitoring and management tools, Mar. Pollut. Bull. 56 (2008),
pp. 1618–1629.
[16] S. Vizzini and A. Mazzola, The effects of anthropogenic organic matter inputs on stable carbon and nitrogen
isotopes in organisms from different trophic levels in a southern Mediterranean coastal area, Sci. Total Environ.
368 (2006), pp. 723–731.
[17] S. Vizzini and A. Mazzola, Sources and transfer of organic matter in food webs of a Mediterranean coastal
environment: Evidence for spatial variability. Estuar. Coast. Shelf Sci. 66 (2006), pp. 459–467.
[18] S. Calvo, G. Lovison, M. Pirrotta, G. Di Maida, A. Tomasello, and M. Sciandra, Modelling the relationship between
sexual reproduction and rhizome growth in Posidonia oceanica (L.) Delile, Mar. Ecol. 27 (2006), pp. 361–371.
[19] A. Tomasello, S. Calvo, G. Di Maida, G. Lovison, M. Pirrotta, and M. Sciandra, Shoot age as a confounding factor
on detecting the effect of human-induced disturbance on Posidonia oceanica growth performance, J. Exp. Mar.
Biol. Ecol. 343 (2007), pp. 166–175.
[20] S. Calvo, G. Ciraolo, and G. La Loggia, Monitoring Posidonia oceanica meadows in a Mediterranean coastal
lagoon (Stagnone, Italy) by means of neural network and isodata classification methods, Int. J. Remote Sens.
24(13) (2003), pp. 2703–2716.
[21] A. Tomasello, F. Luzzu, G. Di Maida, C. Orestano, M. Pirrotta, A. Scannavino, and S. Calvo, Detection and
mapping of Posidonia oceanica dead matte by high-resolution acoustic imaging, Ital. J. Remote Sens. 41(2) (2009),
pp. 139–146.
[22] G. Procaccini, L. Mazzella, R.S. Alberte, and D.H. Les, Chloroplast tRNALeu (UAA) intron sequences provide
phylogenetic resolution of seagrass relationships, Aquat. Bot. 62 (1999), pp. 269–283.