Page 7 - Asylv_molars_Pmax_revised_2014_01
P. 7

7	
  
	
  
	
  

Statistics	
  

Differences	
  between	
  groups	
  (sexes,	
  localities,	
  geographic	
  groups)	
  were	
  investigated	
  using	
  analyses	
  of	
  
variance	
  (ANOVA)	
  completed	
  by	
  their	
  non-­‐parametric	
  analogue	
  (Kruskall	
  Wallis	
  test,	
  KW)	
  for	
  
univariate	
  variables,	
  and	
  multivariate	
  analysis	
  of	
  variance	
  (MANOVA)	
  for	
  the	
  set	
  of	
  shape	
  variables.	
  

The	
  pattern	
  of	
  shape	
  variation	
  was	
  assessed	
  using	
  a	
  principal	
  component	
  analysis	
  (PCA)	
  on	
  the	
  
variance-­‐covariance	
  (VCV)	
  matrix	
  based	
  on	
  the	
  14	
  shape	
  variables	
  (FCs).	
  This	
  provided	
  synthetic	
  axes	
  
(principal	
  components	
  (PCs),	
  e.g.	
  eigenvectors)	
  summarizing	
  the	
  most	
  important	
  directions	
  of	
  
variance	
  within	
  the	
  data	
  set.	
  	
  

Relationships	
  between	
  the	
  set	
  of	
  shape	
  variables	
  considered	
  as	
  dependent	
  matrix,	
  and	
  another	
  
quantitative	
  variable	
  (e.g.	
  size	
  or	
  latitude)	
  were	
  investigated	
  using	
  multivariate	
  regressions.	
  	
  

	
  

Directions	
  of	
  main	
  variance	
  and	
  comparison	
  of	
  vectors	
    	
  

Pmax	
  was	
  calculated	
  as	
  the	
  first	
  eigenvector	
  of	
  a	
  PCA	
  on	
  the	
  intra-­‐population	
  VCV	
  matrix	
  of	
  the	
  14	
  
shape	
  variables.	
  Directions	
  of	
  evolution	
  were	
  calculated	
  as	
  the	
  vector	
  of	
  difference	
  between	
  two	
  
populations	
  (e.g.,	
  an	
  insular	
  population	
  and	
  its	
  putative	
  mainland	
  relative)	
  or	
  as	
  direction	
  of	
  main	
  
phenotypic	
  variance	
  among	
  a	
  set	
  of	
  populations	
  (first	
  eigenvector	
  based	
  on	
  the	
  VCV	
  matrix	
  among	
  
population	
  means).	
  	
  

Similarity	
  between	
  vectors	
  (Pmax	
  and	
  evolutionary	
  directions)	
  was	
  assessed	
  by	
  calculating	
  their	
  
correlation	
  R,	
  i.e.	
  the	
  arccosine	
  of	
  the	
  inner	
  product	
  of	
  the	
  two	
  vector	
  elements,	
  ranging	
  between	
  -­‐1	
  
(vectors	
  pointing	
  in	
  totally	
  opposite	
  directions)	
  and	
  +1	
  (vectors	
  perfectly	
  pointing	
  in	
  the	
  same	
  
direction).	
  This	
  observed	
  correlation	
  was	
  compared	
  to	
  the	
  distribution	
  of	
  R	
  from	
  fifty	
  thousand	
  
simulated	
  random	
  vectors.	
  Each	
  random	
  vector	
  was	
  calculated	
  as	
  follow:	
  each	
  of	
  its	
  14	
  elements	
  was	
  
drawn	
  from	
  a	
  uniform	
  probability	
  distribution	
  in	
  the	
  range	
  from	
  +1	
  to	
  -­‐1,	
  and	
  the	
  vector	
  was	
  then	
  
normed	
  to	
  unity.	
  The	
  distribution	
  of	
  these	
  random	
  vectors	
  provided	
  the	
  following	
  significance	
  
threshold	
  values	
  for	
  the	
  absolute	
  value	
  of	
  R	
  (a	
  significant	
  probability	
  meaning	
  that	
  the	
  observed	
  R	
  is	
  
larger	
  than	
  expected	
  based	
  on	
  the	
  distribution	
  of	
  R	
  between	
  random	
  vectors):	
  P	
  <	
  0.01,	
  R	
  =	
  0.651	
  (*);	
  
P	
  	
  <	
  0.001,	
  R	
  =	
  0.770	
  (**);	
  P	
  <	
  0.0001,	
  R	
  =	
  0.860	
  (***).	
  Note	
  that	
  the	
  absolute	
  value	
  of	
  R	
  was	
  
considered,	
  because	
  the	
  +/-­‐	
  direction	
  of	
  Pmax	
  (and	
  of	
  any	
  eigenvector)	
  is	
  arbitrary.	
  
   2   3   4   5   6   7   8   9   10   11   12