Page 18 - Franzitta_et_alii_2017
P. 18

Sustainability 2017, 9, 106                                                        18 of 19


                order to sell the surplus of energy into the electrical grid. In this way, with a double installed power
                of wind and sea wave farms, the breakeven time is about 14 years. The introduction of an incentive
                related to the annual distance covered by hydrogen buses and/or the selling of electrical surplus can
                be a successful way to reduce the breakeven time, making this project feasible.

                Author Contributions: All authors contributed to writing the article on equal terms. All authors read and
                approved the final manuscript.
                Conflicts of Interest: The authors declare no conflict of interest.


                References
                1.   International Energy Agency IEA. Solar Energy Perspectives; OECD (Organisation for Economic Co-operation
                     and Development) Publishing: Paris, France, 2011.
                2.   Boscaino, V.; Cipriani, G.; Curto, D.; Di Dio, V.; Franzitta, V.; Trapanese, M.; Viola, A. A small scale prototype
                     of a wave energy conversion system for hydrogen production. In Proceedings of the IECON 2015-41st
                     Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015;
                     pp. 003591–003596.
                3.   Sørensen, B. Renewable Energy—Its Physics, Engineering, Environmental Impacts, Economics & Planning, 3rd ed;
                     Elsevier: Amsterdam, The Netherlands, 2004.
                4.   Winter, U.; Weidner, H. Hydrogen for the Mobility of the Future Results of GM/Opel’s Well-to-Wheel Studies
                     in North America and Europe. Fuel Cells 2003, 3, 76–83. [CrossRef]
                5.   Shaheen, S.; Martin, E.; Lipman, T. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen
                     Fueling Infrastructure: An Exploratory Study. Transp. Res. Rec. J. Transp. Res. Board 2008, 2058, 155–162.
                     [CrossRef]
                6.   Langford, B.C.; Cherry, C. Transitioning a bus transit fleet to hydrogen fuel: A case study of Knoxville Area
                     Transit. Int. J. Hydrogen Energy 2012, 37, 2635–2643. [CrossRef]
                7.   Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Matteucci, F.; Breedveld, L.; Antonucci, V.
                     Renewable energy for hydrogen production and sustainable urban mobility. Int. J. Hydrog. Energy 2010, 35,
                     9996–10003. [CrossRef]
                8.   Trapanese, M.; Franzitta, V.; Viola, A. A dynamic model for hysteresis in magnetostrictive devices.
                     J. Appl. Phys. 2014, 115, 1–4. [CrossRef]
                9.   GSE (Gestore Servizi Energetici). Incentivazione delle Fonti Rinnovabili. Bollettino Aggiornato al 31 Giugno
                     2015. Available online: http://enerweb.casaccia.enea.it/enearegioni/UserFiles/GSE_FR_IISem2015.pdf
                     (accessed on 10 January 2017).
                10.  RSE (Ricerca Sistema Energetico). Atlante Eolico Interattivo—RSE. Available online: http://atlanteeolico.
                     rse-web.it/ (accessed on 19 October 2016).
                11.  Zuccato Energia. ZE 150 LT. Available online: http://www.zuccatoenergia.it/images/pdfs/DS_ZE150_IT.
                     pdf? (accessed on 10 January 2017).
                12.  Sannino, G.; Bargagli, A.; Carillo, A.; Caiaffa, E.; Lombardi, E.; Monti, P.; Leuzzi, G. Valutazione del Potenziale
                     Energetico del Moto Ondoso Lungo le Coste Italiane. Available online: http://www.enea.it/it/Ricerca_
                     sviluppo/ documenti/ricerca-di-sistema-elettrico/correnti-marine/rds-151.pdf (accessed on 10 January 2017).
                13.  Franzitta, V.; Trapanese, M.; Giaconia, C.; Ferrara, P.; Viola, A. Design and experimental test of a low costweather
                     buoy. In Proceedings of the 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–5.
                14.  Franzitta, V.; Viola, A.; Trapanese, M. Design of a transverse flux machine for power generation from
                     seawaves. J. Appl. Phys. 2014, 115, 17E712. [CrossRef]
                15.  Franzitta, V.; Milone, A.; Milone, D.; Trapanese, M.; Viola, A.; Pitruzzella, S. Experimental evidence on the
                     thermal performance of opaque surfaces in Mediterranean climate. Adv. Mater. Res. 2014, 860, 1227–1231.
                     [CrossRef]
                16.  Curto, D. Ottimizzazione delle Performances Energetiche di un Innovativo Generatore di Energia Elettrica da Moto
                     Ondoso; Gruppo Editoriale L’Espresso: Rome, Italy, 2015.
                17.  Franzitta, V.; Curto, D.; Rao, D.; Milone, D. Near zero energy island with sea wave energy: The case study of
                     Pantelleria in Mediterranean Sea. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016;
                     pp. 1–5.
   13   14   15   16   17   18   19