Page 16 - Antonellini_2013
P. 16
16 M. Antonellini et al. / Marine and Petroleum Geology xxx (2013) 1e16
and productivity in heterogeneous carbonate reservoirs. In: Society of Petro- Morris, A.P., Smart, K.J., Ferrill, D.A., Reish, N.E., Cowell, P.F., 2012. Production-
leum Engineers, International Petroleum Technology Conference, 21e23 induced fault compartmentalization at Elk Hills field, California. AAPG Bull. 96,
November 2005, Doha, Qatar, p. 23. http://dx.doi.org/10.2523/10492-MS. 1001e1015.
Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Nigro, F., Renda, P., Arisco, G., 2000. Tettonica recente nella Sicilia nord-occidentale
Wibberley, C.A.J., Withjack, M.O., 2010. A review of recent developments con- e nelle Isole Egadi. Boll. Soc. Geol. Ital 119, 307e319.
cerning the structure, mechanics and fluid flow properties of fault zones. Nelson, R.A., 2001. Geological Analysis of Naturally Fractured Reservoirs. The Gulf
J. Struct. Geol. 32, 1557e1575. Publishing Company, Houston.
Fisher, N.I., Lewis, T., Embleton, B.J.J., 1987. Statistical Analysis of Spherical Data. Ngwenya, B.T., Kwon, O., Elphick, S.C., Main, I.G., 2003. Permeability evolution
Cambridge University Press. during progressive development of deformation bands in porous sandstones.
Flodin, E., Aydin, A., Durlofsky, L., Yeten, B., 2001. Representation of Fault Zone J. Geophys. Res. 108 (B7), 2343. http://dx.doi.org/10.1029/2002JB001854.
Permeability in Reservoir Flow Models. SPE Paper 71671. SPE, Houston, TX, USA. Parkhurst, D.L., Kipp, K.L., Charlton, S.R., 2010. PHAST Version 2 e A Program for
Flodin, E., Durlofsky, L., Aydin, A., 2004. Upscaled models of flow and transport in Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochem-
faulted sandstone: boundary condition effects and explicit fracture modeling. ical Reactions. U.S. Geological Survey Techniques and Methods 6-A35, p. 235.
Petrol. Geosci. 10, 173e181. Pearce, M.A., Jones, R.R., Smith, S.A.F., McCaffrey, K.J.W., 2011. Quantification of fold
Fossen, H., Bale, A., 2007. Deformation bands and their influence on fluid flow. curvature and fracturing using terrestrial laser scanning. AAPG Bull. 95, 771e794.
AAPG Bull. 91, 1685e1700. Penney, R., Moosa, R., Shahin, G., Hadhrami, F., Kok, A., Engen, G., van Ravesteijn, O.,
Fossen, H., Schultz, R.A., Rundhovde, E., Rotevatn, A., Buckley, S.J., 2010. Fault linkage Rawnsley, K., Kharusi, B., 2005. Steam injection in fractured carbonate reser-
and graben stepovers in the Canyonlands (Utah) and the North Sea Viking voirs: starting a new trend in EOR. In: International Petroleum Technology
Graben, with implications for hydrocarbon migration and accumulation. AAPG Conference, 21e23 November 2005, Doha, Qatar. http://dx.doi.org/10.2523/
Bull. 94, 597e613. 10727-MS.
Fowles, J., Burley, S., 1994. Textural and permeability characteristics of faulted, high Pollock, D.W., 1994. User’s Guide for MODPATH/MODPATH-PLOT, Version 3: a Par-
porosity sandstones. Mar. Petrol. Geol. 11, 608e623. ticle Tracking Post-processing Package for MODFLOW, the U. S. Geological
Giunta, G., Nigro,F.,Renda,P.,Giorgianni,A.,2000. The Sicilian-Maghrebides Tyrrhenian Survey Finite-difference Ground-water Flow Model. U. S. Geological Survey.
margin: a neotectonic evolutionary model. Boll. Soc. Geol. Ital. 119, 553e565. Open-File Report 94-464, 249 pp.
Giunta, G., Luzio, D., Tondi, E., De Luca, L., Giorgianni, A., D’Anna, G., Renda, P., Putz-Perrier, M.W., Sanderson, D.J., 2010. Distribution of faults and extensional strain
Cello, G., Nigro, F., Vitale, M., 2004. The Palermo (Sicily) seismic cluster of in fractured carbonates of the North Malta Graben. AAPG Bull. 94, 435e456.
September 2002, in the seismotectonic framework of the Tyrrhenian Sea-Sicily Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R., Draganits, E., 2011. Diage-
border area. Ann. Geophys. 47 (6), 1755e1770. netic control of deformation mechanisms in deformation bands in a carbonate
Giunta, G., Luzio, D., Agosta, F., Calò, M., Di Trapani, F., Giorgianni, A., Oliveri, E., grainstone. AAPG Bull. 95, 1369e1381.
Orioli, S., Perniciaro, M., Vitale, M., Chiodi, M., Adelfio, Giada, 2009. An inte- Rawling, G.C., Goodwin, L.B., Wilson, J.L., 2000. Internal architecture, permeability
grated approach to investigate the seismotectonics of northern Sicily and structure, and hydrologic significance of contrasting fault-zone types. Geology
southern Tyrrhenian. Tectonophysics 476, 13e21. 29, 43e46.
Golder Associates Ltd., 2009. Derivation of Basic Fracture Properties. Golder Asso- Roberts, G.P., 2007. Fault orientation variations along the strike of active normal
ciates Ltd., Portland, USA. fault systems in Italy and Greece: implications for predicting the orienta-
Haneberg, W.C., 1995. Steady state groundwater flow across idealized faults. Water tions of subseismic-resolution faults in hydrocarbon reservoirs. AAPG Bull.
Resour. Res. 31, 1815e1820. 91, 1e20.
Harbaugh, A.W., 2005. MODFLOW-2005, the U.S. Geological Survey Modular Rotevatn, A., Buckley, S.J., Howell, J.A., Fossen, H., 2009. Overlapping faults and their
Ground-water Model e The Ground-water Flow Process. U.S. Geological Survey effect on fluid flow in different reservoir types: a LIDAR-based outcrop
Techniques and Methods 6-A16, p. 253. modeling and flow simulation study. AAPG Bull. 93, 407e427.
Hustoft, S., Mienert, J., Bunz, S., Nouze, H., 2007. High-resolution 3D-seismic data Rotevatn, A., Fossen, H., 2011. Simulating the effect of subseismic fault tails and
indicate focussed fluid migration pathways above polygonal fault systems of process zones in a siliciclastic reservoir analogue: implications for aquifer
the mid-Norwegian margin. Mar. Geol. 245, 89e106. support and trap definition. Mar. Petrol. Geol. 28, 1648e1662.
Jourde, H., Flodin, E., Aydin, A., Durlofsky, L., Wen, X., 2002. Computing permeability Rustichelli, A., Tondi, E., Agosta, F., Cilona, A., Giorgioni, M., 2012. Development and
of fault zones in eolian sandstone from outcrop measurements. AAPG Bull. 86, distribution of bed-parallel compaction bands and pressure solution seams in
1187e1200. the Bolognano Formation carbonates (Majella Mountain, Italy). J. Struct. Geol.
Kattenhorn, S.A., Pollard, D.D., 2001. Integrating 3-D seismic data, field analogs, 37, 181e199.
and mechanical models in the analysis of segmented normal faults in the Saillet, E., Wibberley, C.A.J., 2013. Permeability and flow impact of faults and
Wytch Farm oil field, southern England, United Kingdom. AAPG Bull. 85, deformation bands in high-porosity sand reservoirs: Southeast Basin, France,
1183e1210. analog. AAPG Bull. 97, 437e464.
Lohr, T., Krawczyk, C.M., Tanner, D.C., Samiee, R., Endres, H., Thierer, P.O., Oncken, O., Schultz, R.A., Soliva, R., Fossen, H., Okubo, C.H., Reeves, D.M., 2008. Dependence of
Trappe, H., Bachmann, R., Kukla, P.A., 2008. Prediction of subseismic faults and displacementelength scaling relations for fractures and deformation bands on
fractures: integration of three-dimensional seismic data, three-dimensional the volumetric changes across them. J. Struct. Geol. 30, 1405e1411.
retro deformation, and well data on an example of deformation around an Schultz, R.A., Klimczak, C., Fossen, H., Olson, J.E., Exner, U., Reeves, D.M., Soliva, R.,
inverted fault. AAPG Bull. 92, 473e485. 2013. Statistical tests of scaling relationships for geologic structures. J. Struct.
Lothe, A.E., Gabrielsen, R.H., Bjornevoll-Hagen, N., Larsen, B.T., 2002. An experi- Geol. 48, 85e94.
mental study of the texture of deformation bands: effects on the porosity and Shipton, Z., Evans, J., Robeson, K., Forster, C., Snelgrove, S., 2002. Structural het-
permeability of sandstones. Petrol. Geosci. 8, 195e207. erogeneity and permeability in faulted eolian sandstone: implications for
Maerten, L., Gillepsie, P., Pollard, D.D., 2002. Effect of local stress perturbation on subsurface modeling of faults. AAPG Bull. 86, 863e883.
secondary fault development. J. Struct. Geol. 24, 145e153. Sternlof, K., Chapin, J., Pollard, D., Durlofsky, L., 2004. Permeability effects of
Maerten, L., Maerten, F., 2006. Chronologic modeling of faulted and fractured res- deformation band arrays in sandstone. AAPG Bull. 88, 1315e1329.
ervoirs using geomechanically based restoration: technique and industry ap- Taylor, W.L., Pollard, D.D., 2000. Estimation of in situ permeability of deformation bands
plications. AAPG Bull. 90, 1201e1226. in porous sandstone, Valley of Fire, Nevada. Water Resour. Res. 36, 2595e2606.
Maerten, L., Gillespie, P., Daniel, J.M., 2006. Three-dimensional geomechanical Tondi, E., Zampieri, D., Giunta, G., Renda, P., Unti, M., Giorgianni, A., Cello, G., 2006a.
modeling for constraint of sub-seismic fault simulation. AAPG Bull. 90,1337e1358. Active faults and inferred seismic sources in the San Vito lo Capo peninsula,
Main, I.G., Kwon, O., Ngwenya, B.T., Elphick, S.C., 2000. Fault sealing during north-western Sicily, Italy. In: Geological Society of London, Special Publica-
deformation-band growth in porous sandstone. Geology 28, 1131e1134. tions, vol. 262, pp. 365e377.
Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W. H. Freeman, San Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L., Cello, G., 2006b. Interaction
Francisco. between deformation bands and stylolites in fault development in carbonate
Manzocchi, T., Walsh, J., Nell, P., Yielding, G., 1999. Fault transmissibility multipliers grainstones of Majella Mountain, Italy. J. Struct. Geol 28, 376e391.
for flow simulations models. Petrol. Geosci. 5, 53e63. Tondi, E., 2007. Nucleation, development and petrophysical properties of faults in
Manzocchi, T., Heath, A.E., Palananthakumar, B., Childs, C., Walsh, J.J., 2008. Faults in carbonate grainstones: evidence from the San Vito Lo Capo peninsula (Sicily,
conventional flow simulation models: a consideration of representational as- Italy). J. Struct. Geol. 29, 614e628.
sumptions and geological uncertainties. Petrol. Geosci. 14, 91e110. Tondi, E., Cilona, A., Agosta, F., Aydin, A., Rustichelli, A., Renda, P., Giunta, G., 2012.
Marrett, R., Allmendinger, R.W., 1992. Amount of extension on “small” faults: an Growth processes, dimensional parameters and scaling relationships of two
example from the Viking graben. Geology 20, 47e50. conjugate sets of compactive shear bands in porous carbonate grainstones,
Matthäi, S., Aydin, A., Pollard, D., Roberts, S., 1998. Numerical simulation of de- Favignana Island, Italy. J. Struct. Geol. 37, 53e64.
viations from radial drawdown in a faulted sandstone reservoir with joints and Walsh, J.J., Watterson, J., Heath, A., Gillepsie, P.A., Childs, C., 1998. Assessment of the
zones of deformation bands. In: Jones, G., Fisher, Q., Knipe, R. (Eds.), Faulting, effects of sub-seismic faults on bulk permeabilities of reservoir sequences. In:
Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, Geological Society of Geological Society of London, Special Publications, vol. 127, pp. 99e114.
London, Special Publication, vol. 147, pp. 157e191. Winston, R.W., 2009. ModelMuse e A Graphical User Interface for MODFLOW-2005
Micarelli, L., Benedicto, A., Wibberley, C.A.J., 2006. Structural evolution and and PHAST. U.S. Geological Survey, Techniques and Methods 6-A29, p. 59.
permeability of normal fault zones in highly porous carbonate rocks. J. Struct. Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction.
Geol. 28, 1214e1227. AAPG Bull. 81, 897e917.
Morris, A.P., Ferrill, D.A., McGinnis, R.N., 2009. Mechanical stratigraphy and faulting Yielding, G., Walsh, J.J., Watterson, J., 1992. The prediction of small-scale faulting in
in cretaceous carbonates. AAPG Bull. 93, 1459e1470. reservoirs. First Break 10, 449e460.
Please cite this article in press as: Antonellini, M., et al., Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy),
Marine and Petroleum Geology (2013), http://dx.doi.org/10.1016/j.marpetgeo.2013.12.003