Page 16 - Antonellini_2013
P. 16

16                              M. Antonellini et al. / Marine and Petroleum Geology xxx (2013) 1e16
          and productivity in heterogeneous carbonate reservoirs. In: Society of Petro-  Morris, A.P., Smart, K.J., Ferrill, D.A., Reish, N.E., Cowell, P.F., 2012. Production-
          leum Engineers, International Petroleum Technology Conference, 21e23  induced fault compartmentalization at Elk Hills field, California. AAPG Bull. 96,
          November 2005, Doha, Qatar, p. 23. http://dx.doi.org/10.2523/10492-MS.  1001e1015.
        Faulkner,  D.R.,  Jackson,  C.A.L.,  Lunn,  R.J.,  Schlische,  R.W.,  Shipton,  Z.K.,  Nigro, F., Renda, P., Arisco, G., 2000. Tettonica recente nella Sicilia nord-occidentale
          Wibberley, C.A.J., Withjack, M.O., 2010. A review of recent developments con-  e nelle Isole Egadi. Boll. Soc. Geol. Ital 119, 307e319.
          cerning the structure, mechanics and fluid flow properties of fault zones.  Nelson, R.A., 2001. Geological Analysis of Naturally Fractured Reservoirs. The Gulf
          J. Struct. Geol. 32, 1557e1575.                       Publishing Company, Houston.
        Fisher, N.I., Lewis, T., Embleton, B.J.J., 1987. Statistical Analysis of Spherical Data.  Ngwenya, B.T., Kwon, O., Elphick, S.C., Main, I.G., 2003. Permeability evolution
          Cambridge University Press.                           during progressive development of deformation bands in porous sandstones.
        Flodin, E., Aydin, A., Durlofsky, L., Yeten, B., 2001. Representation of Fault Zone  J. Geophys. Res. 108 (B7), 2343. http://dx.doi.org/10.1029/2002JB001854.
          Permeability in Reservoir Flow Models. SPE Paper 71671. SPE, Houston, TX, USA.  Parkhurst, D.L., Kipp, K.L., Charlton, S.R., 2010. PHAST Version 2 e A Program for
        Flodin, E., Durlofsky, L., Aydin, A., 2004. Upscaled models of flow and transport in  Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochem-
          faulted sandstone: boundary condition effects and explicit fracture modeling.  ical Reactions. U.S. Geological Survey Techniques and Methods 6-A35, p. 235.
          Petrol. Geosci. 10, 173e181.                       Pearce, M.A., Jones, R.R., Smith, S.A.F., McCaffrey, K.J.W., 2011. Quantification of fold
        Fossen, H., Bale, A., 2007. Deformation bands and their influence on fluid flow.  curvature and fracturing using terrestrial laser scanning. AAPG Bull. 95, 771e794.
          AAPG Bull. 91, 1685e1700.                          Penney, R., Moosa, R., Shahin, G., Hadhrami, F., Kok, A., Engen, G., van Ravesteijn, O.,
        Fossen, H., Schultz, R.A., Rundhovde, E., Rotevatn, A., Buckley, S.J., 2010. Fault linkage  Rawnsley, K., Kharusi, B., 2005. Steam injection in fractured carbonate reser-
          and graben stepovers in the Canyonlands (Utah) and the North Sea Viking  voirs: starting a new trend in EOR. In: International Petroleum Technology
          Graben, with implications for hydrocarbon migration and accumulation. AAPG  Conference, 21e23 November 2005, Doha, Qatar. http://dx.doi.org/10.2523/
          Bull. 94, 597e613.                                    10727-MS.
        Fowles, J., Burley, S., 1994. Textural and permeability characteristics of faulted, high  Pollock, D.W., 1994. User’s Guide for MODPATH/MODPATH-PLOT, Version 3: a Par-
          porosity sandstones. Mar. Petrol. Geol. 11, 608e623.  ticle Tracking Post-processing Package for MODFLOW, the U. S. Geological
        Giunta, G., Nigro,F.,Renda,P.,Giorgianni,A.,2000. The Sicilian-Maghrebides Tyrrhenian  Survey Finite-difference Ground-water Flow Model. U. S. Geological Survey.
          margin: a neotectonic evolutionary model. Boll. Soc. Geol. Ital. 119, 553e565.  Open-File Report 94-464, 249 pp.
        Giunta, G., Luzio, D., Tondi, E., De Luca, L., Giorgianni, A., D’Anna, G., Renda, P.,  Putz-Perrier, M.W., Sanderson, D.J., 2010. Distribution of faults and extensional strain
          Cello, G., Nigro, F., Vitale, M., 2004. The Palermo (Sicily) seismic cluster of  in fractured carbonates of the North Malta Graben. AAPG Bull. 94, 435e456.
          September 2002, in the seismotectonic framework of the Tyrrhenian Sea-Sicily  Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R., Draganits, E., 2011. Diage-
          border area. Ann. Geophys. 47 (6), 1755e1770.         netic control of deformation mechanisms in deformation bands in a carbonate
        Giunta, G., Luzio, D., Agosta, F., Calò, M., Di Trapani, F., Giorgianni, A., Oliveri, E.,  grainstone. AAPG Bull. 95, 1369e1381.
          Orioli, S., Perniciaro, M., Vitale, M., Chiodi, M., Adelfio, Giada, 2009. An inte-  Rawling, G.C., Goodwin, L.B., Wilson, J.L., 2000. Internal architecture, permeability
          grated approach to investigate the seismotectonics of northern Sicily and  structure, and hydrologic significance of contrasting fault-zone types. Geology
          southern Tyrrhenian. Tectonophysics 476, 13e21.       29, 43e46.
        Golder Associates Ltd., 2009. Derivation of Basic Fracture Properties. Golder Asso-  Roberts, G.P., 2007. Fault orientation variations along the strike of active normal
          ciates Ltd., Portland, USA.                           fault systems in Italy and Greece: implications for predicting the orienta-
        Haneberg, W.C., 1995. Steady state groundwater flow across idealized faults. Water  tions of subseismic-resolution faults in hydrocarbon reservoirs. AAPG Bull.
          Resour. Res. 31, 1815e1820.                           91, 1e20.
        Harbaugh, A.W., 2005. MODFLOW-2005, the U.S. Geological Survey Modular  Rotevatn, A., Buckley, S.J., Howell, J.A., Fossen, H., 2009. Overlapping faults and their
          Ground-water Model e The Ground-water Flow Process. U.S. Geological Survey  effect on fluid flow in different reservoir types: a LIDAR-based outcrop
          Techniques and Methods 6-A16, p. 253.                 modeling and flow simulation study. AAPG Bull. 93, 407e427.
        Hustoft, S., Mienert, J., Bunz, S., Nouze, H., 2007. High-resolution 3D-seismic data  Rotevatn, A., Fossen, H., 2011. Simulating the effect of subseismic fault tails and
          indicate focussed fluid migration pathways above polygonal fault systems of  process zones in a siliciclastic reservoir analogue: implications for aquifer
          the mid-Norwegian margin. Mar. Geol. 245, 89e106.     support and trap definition. Mar. Petrol. Geol. 28, 1648e1662.
        Jourde, H., Flodin, E., Aydin, A., Durlofsky, L., Wen, X., 2002. Computing permeability  Rustichelli, A., Tondi, E., Agosta, F., Cilona, A., Giorgioni, M., 2012. Development and
          of fault zones in eolian sandstone from outcrop measurements. AAPG Bull. 86,  distribution of bed-parallel compaction bands and pressure solution seams in
          1187e1200.                                            the Bolognano Formation carbonates (Majella Mountain, Italy). J. Struct. Geol.
        Kattenhorn, S.A., Pollard, D.D., 2001. Integrating 3-D seismic data, field analogs,  37, 181e199.
          and mechanical models in the analysis of segmented normal faults in the  Saillet, E., Wibberley, C.A.J., 2013. Permeability and flow impact of faults and
          Wytch Farm oil field, southern England, United Kingdom. AAPG Bull. 85,  deformation bands in high-porosity sand reservoirs: Southeast Basin, France,
          1183e1210.                                            analog. AAPG Bull. 97, 437e464.
        Lohr, T., Krawczyk, C.M., Tanner, D.C., Samiee, R., Endres, H., Thierer, P.O., Oncken, O.,  Schultz, R.A., Soliva, R., Fossen, H., Okubo, C.H., Reeves, D.M., 2008. Dependence of
          Trappe, H., Bachmann, R., Kukla, P.A., 2008. Prediction of subseismic faults and  displacementelength scaling relations for fractures and deformation bands on
          fractures: integration of three-dimensional seismic data, three-dimensional  the volumetric changes across them. J. Struct. Geol. 30, 1405e1411.
          retro deformation, and well data on an example of deformation around an  Schultz, R.A., Klimczak, C., Fossen, H., Olson, J.E., Exner, U., Reeves, D.M., Soliva, R.,
          inverted fault. AAPG Bull. 92, 473e485.               2013. Statistical tests of scaling relationships for geologic structures. J. Struct.
        Lothe, A.E., Gabrielsen, R.H., Bjornevoll-Hagen, N., Larsen, B.T., 2002. An experi-  Geol. 48, 85e94.
          mental study of the texture of deformation bands: effects on the porosity and  Shipton, Z., Evans, J., Robeson, K., Forster, C., Snelgrove, S., 2002. Structural het-
          permeability of sandstones. Petrol. Geosci. 8, 195e207.  erogeneity and permeability in faulted eolian sandstone: implications for
        Maerten, L., Gillepsie, P., Pollard, D.D., 2002. Effect of local stress perturbation on  subsurface modeling of faults. AAPG Bull. 86, 863e883.
          secondary fault development. J. Struct. Geol. 24, 145e153.  Sternlof, K., Chapin, J., Pollard, D., Durlofsky, L., 2004. Permeability effects of
        Maerten, L., Maerten, F., 2006. Chronologic modeling of faulted and fractured res-  deformation band arrays in sandstone. AAPG Bull. 88, 1315e1329.
          ervoirs using geomechanically based restoration: technique and industry ap-  Taylor, W.L., Pollard, D.D., 2000. Estimation of in situ permeability of deformation bands
          plications. AAPG Bull. 90, 1201e1226.                 in porous sandstone, Valley of Fire, Nevada. Water Resour. Res. 36, 2595e2606.
        Maerten, L., Gillespie, P., Daniel, J.M., 2006. Three-dimensional geomechanical  Tondi, E., Zampieri, D., Giunta, G., Renda, P., Unti, M., Giorgianni, A., Cello, G., 2006a.
          modeling for constraint of sub-seismic fault simulation. AAPG Bull. 90,1337e1358.  Active faults and inferred seismic sources in the San Vito lo Capo peninsula,
        Main, I.G., Kwon, O., Ngwenya, B.T., Elphick, S.C., 2000. Fault sealing during  north-western Sicily, Italy. In: Geological Society of London, Special Publica-
          deformation-band growth in porous sandstone. Geology 28, 1131e1134.  tions, vol. 262, pp. 365e377.
        Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W. H. Freeman, San  Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L., Cello, G., 2006b. Interaction
          Francisco.                                            between deformation bands and stylolites in fault development in carbonate
        Manzocchi, T., Walsh, J., Nell, P., Yielding, G., 1999. Fault transmissibility multipliers  grainstones of Majella Mountain, Italy. J. Struct. Geol 28, 376e391.
          for flow simulations models. Petrol. Geosci. 5, 53e63.  Tondi, E., 2007. Nucleation, development and petrophysical properties of faults in
        Manzocchi, T., Heath, A.E., Palananthakumar, B., Childs, C., Walsh, J.J., 2008. Faults in  carbonate grainstones: evidence from the San Vito Lo Capo peninsula (Sicily,
          conventional flow simulation models: a consideration of representational as-  Italy). J. Struct. Geol. 29, 614e628.
          sumptions and geological uncertainties. Petrol. Geosci. 14, 91e110.  Tondi, E., Cilona, A., Agosta, F., Aydin, A., Rustichelli, A., Renda, P., Giunta, G., 2012.
        Marrett, R., Allmendinger, R.W., 1992. Amount of extension on “small” faults: an  Growth processes, dimensional parameters and scaling relationships of two
          example from the Viking graben. Geology 20, 47e50.    conjugate sets of compactive shear bands in porous carbonate grainstones,
        Matthäi, S., Aydin, A., Pollard, D., Roberts, S., 1998. Numerical simulation of de-  Favignana Island, Italy. J. Struct. Geol. 37, 53e64.
          viations from radial drawdown in a faulted sandstone reservoir with joints and  Walsh, J.J., Watterson, J., Heath, A., Gillepsie, P.A., Childs, C., 1998. Assessment of the
          zones of deformation bands. In: Jones, G., Fisher, Q., Knipe, R. (Eds.), Faulting,  effects of sub-seismic faults on bulk permeabilities of reservoir sequences. In:
          Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, Geological Society of  Geological Society of London, Special Publications, vol. 127, pp. 99e114.
          London, Special Publication, vol. 147, pp. 157e191.  Winston, R.W., 2009. ModelMuse e A Graphical User Interface for MODFLOW-2005
        Micarelli, L., Benedicto, A., Wibberley, C.A.J., 2006. Structural evolution and  and PHAST. U.S. Geological Survey, Techniques and Methods 6-A29, p. 59.
          permeability of normal fault zones in highly porous carbonate rocks. J. Struct.  Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction.
          Geol. 28, 1214e1227.                                  AAPG Bull. 81, 897e917.
        Morris, A.P., Ferrill, D.A., McGinnis, R.N., 2009. Mechanical stratigraphy and faulting  Yielding, G., Walsh, J.J., Watterson, J., 1992. The prediction of small-scale faulting in
          in cretaceous carbonates. AAPG Bull. 93, 1459e1470.   reservoirs. First Break 10, 449e460.

        Please cite this article in press as: Antonellini, M., et al., Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy),
        Marine and Petroleum Geology (2013), http://dx.doi.org/10.1016/j.marpetgeo.2013.12.003
   11   12   13   14   15   16