Page 15 - Antonellini_2013
P. 15
M. Antonellini et al. / Marine and Petroleum Geology xxx (2013) 1e16 15
one by an anonymous have greatly improved the quality of the
manuscript.
References
Abate, B., Di Maggio, C., Incandela, A., Renda, P., 1993. Carta Geologica dei Monti di
Capo San Vito. Department of Geology and Geodesy, University of Palermo,
Italy.
Abate, B., Incandela, A., Renda, P., 1997. Carta Geologica delle Isole di Favignana e
Levanzo. Department of Geology, University of Palermo.
Agosta, F., Alessandroni, M., Tondi, E., Giorgioni, M., 2010. From fractures to flow: a
field-based quantitative analysis of an outcropping carbonate reservoir. Tecto-
nophysics 490, 197e213.
Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J., Sanz de
Galdeano, C., 2012. Inner structure and deformation mechanisms of normal
faults in conglomerates and carbonate grainstones (Granada Basin, Betic
Cordillera, Spain): inferences on fault permeability. J. Struct. Geol. 45, 4e20.
Ahmadov, R.S., Aydin, A., Karimi-Fard, M., Durlofsky, L.J., 2007. Permeability upscaling
of fault zones in the Aztec Sandstone, Valley of Fire State Park, Nevada, with a
focus on slip surfaces and slip bands. Hydrogeol. J. 15, 1239e1250.
Ambrose, W.A., Lakshminarasimhan, S., Holtz, M.H., Nunez-Lopez, V., Hovorka, S.D.,
Duncan, I., 2008. Geologic factors controlling CO 2 storage capacity and
Figure 15. Single producer well draw-down in the DFN model of San Vito Lo Capo
permanence: case studies based on experience with heterogeneity in oil and
containing the strike-slip faults. Draw-down shown by the equipotential lines around a gas reservoirs applied to CO 2 storage. Environ. Geol. 54, 1619e1633.
3
single producer well ( 20 m /day). K x distribution on the background. Note the
Antonellini, M.A., Aydin, A., 1994. Effect of faulting on fluid flow in porous sand-
smaller refraction of the equipotential lines at the shear structure traces with respect stones: petrophysical properties. AAPG Bull. 78, 355e377.
to Fig. 12. Antonellini, M.A., Aydin, A., 1995. Effect of faulting on fluid flow in porous sand-
stones: geometry and spatial distribution. AAPG Bull. 79, 642e671.
Antonellini, M., Aydin, A., Orr, L., 1999. Outcrop-aided characterization of a faulted
hydrocarbon reservoir: Arroyo Grande Oil Field, California, USA. In:
Table 6 Haneberg, W.C., Mozley, P.S., Moore, J.C., Goodwin, L.B. (Eds.), Faults and Sub-
Draw-down comparison in the two models. surface Fluid Flow in the Shallow Crust, Geophysical Monograph Series, vol. 113.
AGU, Washington, D. C., pp. 7e26.
Single well draw-down (m) Astratti, D., Aarre, V., Vejbaek, O.V., White, G., 2012. Detailed seismic mapping and time-
lapse analysis of a fault network in the Chalk. Search Discov. 1e4. Article #120035.
Deterministic DFN Location Difference % Aydin, A., 1978. Small faults formed as deformation bands in sandstone. Pure Appl.
model model
Geophys. 116, 913e930.
Reference Well 0 10.01 10.01 Homogenous 0.0 Aydin, A., Johnson, A.M., 1978. Development of faults as zones of deformation bands
and as slip surfaces in sandstone. Pure Appl. Geophys. 116, 931e942.
(central) porous medium
Well 0 (central) 10.66 11.1 Porous medium 4.1 Aydin, A., Borja, R.I., Eichhubl, P., 2006. Geological and mathematical framework for
failure modes in granular rock. J. Struct. Geol. 28, 83e98.
with CSB Ballas, G., Soliva, R., Sizun, J.P., Fossen, H., Benedicto, A., Skurtveit, E., 2013. Shear-
Well 1 10.45 11.18 Porous medium 7.0 enhanced compaction bands formed at shallow burial conditions; implications
with CSB
for fluid flow (Provence, France). J. Struct. Geol. 47, 3e15.
Well 3 10.39 9.72 Porous medium 6.4 Balsamo, F., Storti, F., Salvini, F., Silva, A.T., Lima, C.C., 2010. Structural and pet-
with CSB rophysical evolution of extensional fault zones in low-porosity, poorly lithi-
Well 4 10.46 12.8 In ZB 22.4 fied sandstones of the Barreiras Formation, NE Brazil. J. Struct. Geol. 32,
Average draw-down 10.57 10.46 Porous medium 1.0 1806e1826.
with CSB Cello, G., Gambini, R., Mazzoli, S., Read, A., Tondi, E., Zucconi, V., 2000. Fault zone
Average draw-down 27.23 12.88 In ZB 52.7 characteristics and scaling properties of the Val d’Agri Fault System (Southern
Average draw-down 11.08 11.77 In compartment 6.2 Apennines, Italy). J. Geodyn. 29, 293e307.
Cello, G., Tondi, E., Micarelli, L., Invernizzi, C., 2001. Fault zone fabrics and geofluid
properties as indicators of rock deformation modes. J. Geodyn. 32, 543e565.
Cello, G., Tondi, E., Van Dijk, J.P., Mattioni, L., Micarelli, L., Pinti, S., 2003. Geometry,
kinematics and scaling properties of faults and fractures as tools for modeling
Table 7 geofluid reservoirs: examples from the Apennines, Italy. In: Geological Society
K up-scaled at map size (45 32 1m). of London, Special Publications, vol. 212, pp. 7e22.
Celico, F., Petrella, E., Celico, P., 2006. Hydrogeological behavior of some fault zones
K (Host) 2.02 m/d
in a carbonate aquifer of Southern Italy: an experimentally based model. Terra
0.25
Nova 18, 308e313.
n e
Childs, C., Walsh, J.J., Watterson, J., 1990. A method for estimation of the density of
D % fault displacements below the limits of seismic resolution in reservoir forma-
K x (DFN) 1.82 m/d 89.96 tions. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsæter, O., Aasen, J.O.
K y (DFN) 1.80 m/d 89.25 (Eds.), North Sea Oil and Gas Reservoirs II. Graham & Trotman, London, pp. 193e
K z (DFN) 1.99 m/d 98.02 203.
Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A., Spiers, C.J.,
K x (map) 1.59 m/d 78.74 2012. Deformation bands in porous carbonate grainstones: field and laboratory
K y (map) 1.87 m/d 92.70 observations. J. Struct. Geol. 45, 137e157.
K z (map) 1.99 m/d 98.02 Damsleth, E., Sangolt, V., Aamodt, G., 1998. Subseismic faults can seriously affect
fluid flow in the Njord field off western Norway e a stochastic fault modeling
case study. SPE Paper 49024. In: Society of Petroleum Engineers Annual Tech-
nical Conference and Exhibition, New Orleans, p. 10.
Esposito, R.A., Pashin, J.C., Hills, D.J., Walsh, P.M., 2010. Geologic assessment and
Acknowledgments
injection design for a pilot CO 2 -enhanced oil recovery and sequestration
demonstration in a heterogeneous oil reservoir: Citronelle Field, Alabama, USA.
Funding from PRIN 2009 of the Italian Ministry of Research to Environ. Earth. Sci. 60, 431e444.
Fachri,M., Rotevatn,A., Tveranger, J.,2013. Fluidflow in relayzonesrevisited: towards an
Emanuele Tondi and the Reservoir Characterization Project (RCP,
improved representation of small-scale structural heterogeneities in flow models.
www.rechproject.com) is acknowledged; we thank Midland Valley Mar. Petrol. Geol. 46, 144e164. http://dx.doi.org/10.1016/j.marpetgeo.2013.05.016.
Exploration Ltd. for providing MOVEÔ academic license, Fabrizio Færseth, R.B., Johnsen, E., Sperrevik, S., 2007. Methodology for risking fault seal
capacity: implications of fault zone architecture. AAPG Bull. 91, 1231e1246.
Storti and Fabrizio Balsamo for lending the TinyPerm II Portable Air
Farran, H., Harris, J., Al Jabri, S., Jackson, R.R., Al Khayari, S., Thomas, T., 2005. An
Permeameter. Two reviews of this paper one by Luca Micarelli and integrated approach for evaluating and characterising horizontal well inflow
Please cite this article in press as: Antonellini, M., et al., Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy),
Marine and Petroleum Geology (2013), http://dx.doi.org/10.1016/j.marpetgeo.2013.12.003