Page 15 - Antonellini_2013
P. 15

M. Antonellini et al. / Marine and Petroleum Geology xxx (2013) 1e16  15
                                                               one by an anonymous have greatly improved the quality of the
                                                               manuscript.

                                                               References
                                                               Abate, B., Di Maggio, C., Incandela, A., Renda, P., 1993. Carta Geologica dei Monti di
                                                                  Capo San Vito. Department of Geology and Geodesy, University of Palermo,
                                                                  Italy.
                                                               Abate, B., Incandela, A., Renda, P., 1997. Carta Geologica delle Isole di Favignana e
                                                                  Levanzo. Department of Geology, University of Palermo.
                                                               Agosta, F., Alessandroni, M., Tondi, E., Giorgioni, M., 2010. From fractures to flow: a
                                                                  field-based quantitative analysis of an outcropping carbonate reservoir. Tecto-
                                                                  nophysics 490, 197e213.
                                                               Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J., Sanz de
                                                                  Galdeano, C., 2012. Inner structure and deformation mechanisms of normal
                                                                  faults in conglomerates and carbonate grainstones (Granada Basin, Betic
                                                                  Cordillera, Spain): inferences on fault permeability. J. Struct. Geol. 45, 4e20.
                                                               Ahmadov, R.S., Aydin, A., Karimi-Fard, M., Durlofsky, L.J., 2007. Permeability upscaling
                                                                  of fault zones in the Aztec Sandstone, Valley of Fire State Park, Nevada, with a
                                                                  focus on slip surfaces and slip bands. Hydrogeol. J. 15, 1239e1250.
                                                               Ambrose, W.A., Lakshminarasimhan, S., Holtz, M.H., Nunez-Lopez, V., Hovorka, S.D.,
                                                                  Duncan, I., 2008. Geologic factors controlling CO 2 storage capacity and
          Figure 15. Single producer well draw-down in the DFN model of San Vito Lo Capo
                                                                  permanence: case studies based on experience with heterogeneity in oil and
          containing the strike-slip faults. Draw-down shown by the equipotential lines around a  gas reservoirs applied to CO 2 storage. Environ. Geol. 54, 1619e1633.
                            3
          single producer well ( 20 m /day). K x distribution on the background. Note the
                                                               Antonellini, M.A., Aydin, A., 1994. Effect of faulting on fluid flow in porous sand-
          smaller refraction of the equipotential lines at the shear structure traces with respect  stones: petrophysical properties. AAPG Bull. 78, 355e377.
          to Fig. 12.                                          Antonellini, M.A., Aydin, A., 1995. Effect of faulting on fluid flow in porous sand-
                                                                  stones: geometry and spatial distribution. AAPG Bull. 79, 642e671.
                                                               Antonellini, M., Aydin, A., Orr, L., 1999. Outcrop-aided characterization of a faulted
                                                                  hydrocarbon  reservoir: Arroyo  Grande  Oil  Field,  California,  USA.  In:
          Table 6                                                 Haneberg, W.C., Mozley, P.S., Moore, J.C., Goodwin, L.B. (Eds.), Faults and Sub-
          Draw-down comparison in the two models.                 surface Fluid Flow in the Shallow Crust, Geophysical Monograph Series, vol. 113.
                                                                  AGU, Washington, D. C., pp. 7e26.
                         Single well draw-down (m)             Astratti, D., Aarre, V., Vejbaek, O.V., White, G., 2012. Detailed seismic mapping and time-
                                                                  lapse analysis of a fault network in the Chalk. Search Discov. 1e4. Article #120035.
                         Deterministic  DFN  Location  Difference %  Aydin, A., 1978. Small faults formed as deformation bands in sandstone. Pure Appl.
                         model    model
                                                                  Geophys. 116, 913e930.
           Reference Well 0  10.01  10.01  Homogenous  0.0     Aydin, A., Johnson, A.M., 1978. Development of faults as zones of deformation bands
                                                                  and as slip surfaces in sandstone. Pure Appl. Geophys. 116, 931e942.
            (central)                   porous medium
           Well 0 (central)  10.66  11.1  Porous medium   4.1  Aydin, A., Borja, R.I., Eichhubl, P., 2006. Geological and mathematical framework for
                                                                  failure modes in granular rock. J. Struct. Geol. 28, 83e98.
                                        with CSB               Ballas, G., Soliva, R., Sizun, J.P., Fossen, H., Benedicto, A., Skurtveit, E., 2013. Shear-
           Well 1        10.45    11.18  Porous medium   7.0      enhanced compaction bands formed at shallow burial conditions; implications
                                        with CSB
                                                                  for fluid flow (Provence, France). J. Struct. Geol. 47, 3e15.
           Well 3        10.39     9.72  Porous medium  6.4    Balsamo, F., Storti, F., Salvini, F., Silva, A.T., Lima, C.C., 2010. Structural and pet-
                                        with CSB                  rophysical evolution of extensional fault zones in low-porosity, poorly lithi-
           Well 4        10.46    12.8  In ZB       22.4          fied sandstones of the Barreiras Formation, NE Brazil. J. Struct. Geol. 32,
           Average draw-down  10.57  10.46  Porous medium  1.0    1806e1826.
                                        with CSB               Cello, G., Gambini, R., Mazzoli, S., Read, A., Tondi, E., Zucconi, V., 2000. Fault zone
           Average draw-down  27.23  12.88  In ZB   52.7          characteristics and scaling properties of the Val d’Agri Fault System (Southern
           Average draw-down  11.08  11.77  In compartment   6.2  Apennines, Italy). J. Geodyn. 29, 293e307.
                                                               Cello, G., Tondi, E., Micarelli, L., Invernizzi, C., 2001. Fault zone fabrics and geofluid
                                                                  properties as indicators of rock deformation modes. J. Geodyn. 32, 543e565.
                                                               Cello, G., Tondi, E., Van Dijk, J.P., Mattioni, L., Micarelli, L., Pinti, S., 2003. Geometry,
                                                                  kinematics and scaling properties of faults and fractures as tools for modeling
          Table 7                                                 geofluid reservoirs: examples from the Apennines, Italy. In: Geological Society
          K up-scaled at map size (45   32   1m).                 of London, Special Publications, vol. 212, pp. 7e22.
                                                               Celico, F., Petrella, E., Celico, P., 2006. Hydrogeological behavior of some fault zones
           K (Host)              2.02 m/d
                                                                  in a carbonate aquifer of Southern Italy: an experimentally based model. Terra
                                 0.25
                                                                  Nova 18, 308e313.
           n e
                                                               Childs, C., Walsh, J.J., Watterson, J., 1990. A method for estimation of the density of
                                                       D %        fault displacements below the limits of seismic resolution in reservoir forma-
           K x (DFN)             1.82 m/d              89.96      tions. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsæter, O., Aasen, J.O.
           K y (DFN)             1.80 m/d              89.25      (Eds.), North Sea Oil and Gas Reservoirs II. Graham & Trotman, London, pp. 193e
           K z (DFN)             1.99 m/d              98.02      203.
                                                               Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A., Spiers, C.J.,
           K x (map)             1.59 m/d              78.74      2012. Deformation bands in porous carbonate grainstones: field and laboratory
           K y (map)             1.87 m/d              92.70      observations. J. Struct. Geol. 45, 137e157.
           K z (map)             1.99 m/d              98.02   Damsleth, E., Sangolt, V., Aamodt, G., 1998. Subseismic faults can seriously affect
                                                                  fluid flow in the Njord field off western Norway e a stochastic fault modeling
                                                                  case study. SPE Paper 49024. In: Society of Petroleum Engineers Annual Tech-
                                                                  nical Conference and Exhibition, New Orleans, p. 10.
                                                               Esposito, R.A., Pashin, J.C., Hills, D.J., Walsh, P.M., 2010. Geologic assessment and
          Acknowledgments
                                                                  injection design for a pilot CO 2 -enhanced oil recovery and sequestration
                                                                  demonstration in a heterogeneous oil reservoir: Citronelle Field, Alabama, USA.
            Funding from PRIN 2009 of the Italian Ministry of Research to  Environ. Earth. Sci. 60, 431e444.
                                                               Fachri,M., Rotevatn,A., Tveranger, J.,2013. Fluidflow in relayzonesrevisited: towards an
          Emanuele Tondi and the Reservoir Characterization Project (RCP,
                                                                  improved representation of small-scale structural heterogeneities in flow models.
          www.rechproject.com) is acknowledged; we thank Midland Valley  Mar. Petrol. Geol. 46, 144e164. http://dx.doi.org/10.1016/j.marpetgeo.2013.05.016.
          Exploration Ltd. for providing MOVEÔ academic license, Fabrizio  Færseth, R.B., Johnsen, E., Sperrevik, S., 2007. Methodology for risking fault seal
                                                                  capacity: implications of fault zone architecture. AAPG Bull. 91, 1231e1246.
          Storti and Fabrizio Balsamo for lending the TinyPerm II Portable Air
                                                               Farran, H., Harris, J., Al Jabri, S., Jackson, R.R., Al Khayari, S., Thomas, T., 2005. An
          Permeameter. Two reviews of this paper one by Luca Micarelli and  integrated approach for evaluating and characterising horizontal well inflow
          Please cite this article in press as: Antonellini, M., et al., Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy),
          Marine and Petroleum Geology (2013), http://dx.doi.org/10.1016/j.marpetgeo.2013.12.003
   10   11   12   13   14   15   16