Page 9 - Thunnus_2020
P. 9

www.nature.com/scientificreports/                                     www.nature.com/scientificreports


                                References
                                  1.  Jessop, B. M., Shiao, J., Iizuka, Y. & Tzeng, W. Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by
                                   otolith microchemistry. 233, 217–229 (2002).
                                  2.  Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar.
                                   Mammal Sci. 26, 509–572 (2010).
                                  3.  Clementz, M. T. & Koch, P. L. Dif erentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel.
                                   Oecologia 129, 461–472 (2001).
                                  4.  Zanden, H. B. V., Bjorndal, K. A., Reich, K. J. & Bolten, A. B. Individual specialists in a generalist population: Results from a long-
                                   term stable isotope series. Biol. Lett. 6, 711–714 (2010).
                                  5.  Avens, L. et al. Complementary skeletochronology and stable isotope analyses of er new insight into juvenile loggerhead sea turtle
                                   oceanic stage duration and growth dynamics. Mar. Ecol. Prog. Ser. 491, 235–251 (2013).
                                  6.  Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacif c white
                                   sharks (Carcharodon carcharias). PLoS One 7 (2012).
                                  7.  Deniro, M. J. & Epstein, S. Inf uence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45,
                                   341–351 (1980).
                                  8.  Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. in Stable isotopes in ecology and environmental science.
                                   (Blackwell Publishing, Boston, MA., 2007).
                                  9.  Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451
                                   (1990).
                                 10.  Chisholm, B. S., Nelson, D. E., Hobson, K. A., Schwarcz, H. P. & Knyf, M. Carbon isotope measurement techniques for bone
                                   collagen. J. Archaeol. Sci. 10, 355–360 (1983).
                                 11.  Jørkov, M. L. S., Heinemeier, J. & Lynnerup, N. Evaluating bone collagen extraction methods for stable isotope analysis in dietary
                                   studies. J. Archaeol. Sci. 34, 1824–1829 (2007).
                                 12.  Snover, M. L., Hohn, A. A., Crowder, L. B. & Macko, S. A. Combining stable isotopes and skeletal growth marks to detect habitat
                                   shif s in juvenile loggerhead sea turtles Caretta caretta. Endanger. Species Res. 13, 25–31 (2010).
                                 13.  Elorriaga-Verplancken, F., Aurioles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. δ15N and δ13C values in dental collagen as
                                   a proxy for age- and sex-related variation in foraging strategies of California sea lions. Mar. Biol. 160, 641–652 (2013).
                                 14.  Turner Tomaszewicz, C. N., Seminof , J. A., Avens, L. & Kurle, C. M. Methods for sampling sequential annual bone growth layers for
                                   stable isotope analysis. Methods Ecol. Evol. 7, 556–564 (2016).
                                 15.  Turner Tomaszewicz, C. N., Seminof , J. A., Peckham, S. H., Avens, L. & Kurle, C. M. Intrapopulation variability in the timing of
                                   ontogenetic habitat shif s in sea turtles revealed using δ15N values from bone growth rings. J. Anim. Ecol. 86, 694–704 (2017).
                                 16.  Turner Tomaszewicz, C. N., Seminof , J. A. & Rairez D. Matthew, K. C. M. HHS Public Access. Rapid Commun. Mass Spectrom. 29,
                                   1879–1888 (2015).
                                 17.  Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age
                                   validation methods. J. Fish Biol. 59, 197–242 (2001).
                                 18.  Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals.
                                   Geochim. Cosmochim. Acta 48, 625–639 (1984).
                                 19.  Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues:
                                   Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).
                                 20.  Megalofonou, P. & de Metrio, G. Age estimation and annulus-formation in dorsal spines of juvenile bluef n tuna, T unnus thynnus,
                                   from the Mediterranean Sea. J. Mar. Biol. Assoc. United Kingdom 80, 753–754 (2000).
                                 21.  Estrada, J. A., Lutcavage, M. & T orrold, S. R. Diet and trophic position of Atlantic bluef n tuna (T unnus thynnus) inferred from
                                   stable carbon and nitrogen isotope analysis. Mar. Biol. 147, 37–45 (2005).
                                 22.  Battaglia, P., Pedà, C., Sinopoli, M., Romeo, T. & Andaloro, F. Cephalopods in the diet of young-of-the-year bluef n tuna (T unnus
                                   thynnus L. 1758, Pisces: Scombridae) from the southern Tyrrhenian Sea (central Mediterranean Sea). Ital. J. Zool. 80, 560–565
                                   (2013).
                                 23.  Chase, B. C. Dif erences in diet of Atlantic bluef n tuna (T unnus thynnus) at f ve seasonal feeding grounds on the New England
                                   continental shelf. Fish. Bull. 100, 168–180 (2002).
                                 24.  Karakulak, F. S., Salman, A. & Oray, I. K. Diet composition of bluef n tuna (T unnus thynnus L. 1758) in the Eastern Mediterranean
                                   Sea, Turkey. J. Appl. Ichthyol. 25, 757–761 (2009).
                                 25.  Logan, J. M. et al. Diet of young Atlantic bluef n tuna (T unnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol.
                                   158, 73–85 (2011).
                                 26.  Battaglia, P. et al. Feeding habits of the Atlantic bluef n tuna, T unnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of
                                   Messina). Helgol. Mar. Res. 67, 97–107 (2013).
                                 27.  Olafsdottir, D. et al. Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluef n Tuna (T unnus thynnus L.) during
                                   Autumn Migrations to the Iceland Basin. Front. Mar. Sci. 100, 168–180 (2016).
                                 28.  Seminof , J. A. et al. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino
                                   acids. PLoS One 7, e37403 (2012).
                                 29.  Hart, K. M. et al. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite
                                   tracking. Ecol. Appl. 25, 320–335 (2014).
                                 30.  Sinopoli, M. et al. Diet of young-of-the-year bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the southern Tyrrhenian
                                   (Mediterranean) Sea. J. Appl. Ichthyol. 20, 310–313 (2004).
                                 31.  Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shif  in the diet of juvenile yellowf n tuna from Hawaii.
                                   Mar. Biol. 150, 647–658 (2007).
                                 32.  Kitagawa, T. & Fujioka, K. Rapid ontogenetic shif  in juvenile Pacif c bluef n tuna diet. Mar. Ecol. Prog. Ser. 571, 253–257 (2017).
                                 33.  Logan, J. M. Tracking diet and movement of Atlantic bluef n tuna (T unnus thynnus) using carbon and nitrogen stable isotopes
                                   Submitted to the University. (2014).
                                 34.  Laiz-Carrion, R. et al. Larval bluef n tuna (T unnus thynnus) trophodynamics from Balearic sea (WM) and gulf of Mexico spawning
                                   ecosystems by stable isotope. Collect. Vol. Sci. Pap. ICCAT 71(3), 1354–1365 (2015).
                                 35.  DeNiro, M. J. & Epstein, S. Inf uence of diet on the distribution of carbon isotopes in animals. Microw. Opt. Technol. Lett. 52,
                                   1597–1599 (2010).
                                 36.  Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses.
                                   Oecologia 152, 179–189 (2007).
                                 37.  Collette, B. B. & Nauen, C. E. FAO Species Catalogue Vol. 2 Scombrids of the world an annotated and illustrated catalogue of Tunas,
                                   Mackerels, Bonitos and related species know to date. FAO Fisheries Synopsis 2 (1983).
                                 38.  Collette, B. Fishes of the north-eastern Atlantic and the Mediterranean. (1986).
                                 39.  Cort, J. L. Age and growth of the blue¢n tuna, T unnus thynnus (L.) of the northeast Atlantic. ICCAT, Collect. Vol. Sci. Pap. 35,
                                   213–230 (1991).
                                 40.  Reitsema, L. J., Crews, D. E. & Polcyn, M. Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes.
                                   J. Archaeol. Sci. 37, 1413–1423 (2010).



         Scientific RepoRtS |         (2020) 10:9899  | https://doi.org/10.1038/s41598-020-66566-w             9
   4   5   6   7   8   9   10